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Abstract
We describe non-Abelian generalizations of the Kuramoto model for any
classical compact Lie group and identify their main properties. These models
may be defined on any complex network where the variable at each node
is an element of the unitary group U(n), or a subgroup of U(n). The
nonlinear evolution equations maintain the unitarity of all variables which
therefore evolve on the compact manifold of U(n). Synchronization of
trajectories with phase locking occurs as for the Kuramoto model, for values
of the coupling constant larger than a critical value, and may be measured
by various order and disorder parameters. Limit cycles are characterized by
a frequency matrix which is independent of the node and is determined by
minimizing a function which is quadratic in the variables. We perform
numerical computations for n = 2, for which the SU(2) group manifold is
S3, for a range of natural frequencies and all-to-all coupling, in order to confirm
synchronization properties. We also describe a second generalization of the
Kuramoto model which is formulated in terms of real m-vectors confined to
the (m − 1)-sphere for any positive integer m, and investigate trajectories
numerically for the S2 model. This model displays a variety of synchronization
phenomena in which trajectories generally synchronize spatially but are not
necessarily phase-locked, even for large values of the coupling constant.

PACS numbers: 05.45.Xt, 89.75.Fb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The phenomenon of self-synchronization in complex systems has been widely investigated,
see the general accounts [1, 2], also textbooks such as [3, 4], and the review articles [5–9].
Synchronization of dynamical systems involves two or more interacting elements of a complex
system, with properties that are correlated in time leading to the evolution of the system as a
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collective entity, see for example the discussion in [9]. Many types of synchronization have
been identified particularly for chaotic systems [6], but here we consider phase synchronization
in which phases are closely or exactly correlated, and spatial synchronization in which the
trajectories of connected systems are also correlated.

The first modern investigations of phase synchronized systems have been attributed to
Winfree [10, 11] who studied the nonlinear dynamics of a large population of weakly coupled
limit cycle oscillators, in which he assumed that the oscillators’ natural frequencies were
distributed about some mean value according to a prescribed probability distribution. As
emphasized also in [9], amplitude variations are neglected in the limit of weak coupling and
the oscillators are described solely by their phases along their limit cycles.

The Kuramoto model, proposed in 1975 [12], has been extensively investigated as a
model of phase synchronization over a complex network. Its popularity has been attributed
[7] to its mathematical tractability together with a level of complexity that enables the model
to display a wide variety of synchronization behaviours. The Kuramoto model describes
a system of weakly coupled, nearly identical interacting limit cycle oscillators where each
oscillator influences the phase of oscillators to which it is connected. As is well known [5,
7, 9], when the coupling is very weak each element oscillates independently according to its
natural frequency, but at an increased coupling strength partial synchronization takes place in
which clusters of synchronized nodes appear, while at a sufficiently large coupling strength the
system synchronizes completely to a mean frequency. For a system of N nodes the Kuramoto
equations are usually written as

θ̇i = νi +
κ

N

N∑
j=1

aij sin(θj − θi), (i = 1, . . . , N), (1)

where θi is the phase angle at the ith node, κ � 0 is a coupling constant and νi is the natural
frequency of θi , distributed according to a given probability distribution. The N × N matrix
(aij ) is the connectivity matrix where we can choose aij = 1 if the distinct nodes i, j are
connected, and zero otherwise, but in any case the elements depend only on i, j . We refer
to the reviews [5, 7, 9] for further references and for analyses of the Kuramoto model and its
extensions, including discussions of fundamental topics such as the stability of solutions, the
inclusion of forcing terms and various applications.

Here we describe a hierarchy of models which we term non-Abelian Kuramoto models,
since the fundamental variable at each node is an n × n unitary matrix Ui corresponding
to an element of the compact non-Abelian unitary group U(n), or a subgroup of U(n).
The equations for the Abelian case n = 1 reduce to the simplest Kuramoto model (1) by
parametrizing Ui = e−iθi although we also find it convenient to parametrize each Ui according
to Ui = x1

i − ix2
i where the 2-vector xi = (x1

i , x
2
i ) lies on the unit circle. We determine

basic properties of the non-Abelian models, in particular, the existence of periodic limit cycles
characterized by synchronized frequencies independent of the node i and show numerically that
for sufficiently large couplings, solutions with random initial conditions synchronize to these
limit cycles. We distinguish here between spatial synchronization, which refers to trajectories
which are closely correlated in coordinate space and is measured by an order parameter which
generalizes that defined by Kuramoto [13, p 71], and phase synchronization in which phases
are either closely or exactly correlated. In the latter case ‘exact’ means that trajectories are
numerically indistinguishable from periodic limit cycles with a common frequency, to which
we refer as ‘phase-locked’ trajectories, and which can be measured by one or more disorder
parameters as discussed also in [14].

We also describe a second generalization of the Abelian model (1) which depends on an
integer m and reduces to (1) for m = 2, but for m = 4 coincides with the non-Abelian model
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for n = 2, for which trajectories lie on the group manifold of SU(2), namely the 3-sphere S3.
The trajectories in these models are described by a real m-vector xi , which we regard as the
location of a particle of unit mass, and lie in the common vector space Sm−1. Phase locking
for general m, however, does not necessarily follow as for m = 2 or m = 4, as we demonstrate
for m = 3. In this case, spatial synchronization occurs in the sense that trajectories on S2 are
coordinated in space, i.e. the particles bunch together in a tight spatial cluster with the unit
centre-of-mass vector executing almost periodic motion on S2, but with relative motion within
the cluster so that phase synchronization takes place only in a time-averaged sense.

Both generalizations possess the feature that the relevant variables, whether the group
elements Ui or the m-vectors xi at each node, have constant amplitude or constant length as a
consequence of the equations of motion, i.e. the amplitudes at every node are constants of the
motion. We restrict our numerical investigations to all-to-all coupling (aij = 1 for all i �= j )
and to N � 100, however other work confirms our numerical findings for large values of N,
and also for network couplings other than all-to-all couplings.

We firstly describe chirally covariant non-Abelian models in section 2, where the variable
at each node is an n × n unitary matrix Ui, or an element of a subgroup of U(n), and
discuss in particular why trajectories are confined to the compact group manifold. Then in
section 3 we investigate limit cycles and their properties, although our aim is not to prove
stability of these limit cycles, but to identify their main properties such as the common
frequency of synchronized trajectories, and how spatial and phase correlations may be
measured. In section 4, we consider specifically the SU(2) model, for which trajectories
lie on S3, and its generalization to an Sm−1 model for any positive integer m. In section 5, we
consider specifically the S2 model and discuss numerical results, followed in section 6 by the
S3 model, which resembles the Abelian Kuramoto model in that trajectories are both spatially
synchronized and phase-locked for sufficiently large values of the coupling constant κ , i.e. the
N particles move in a synchronized phase-locked cluster on S3. In section 7, we investigate
several qualitative features of the Sm−1 models including spatial synchronization as well as
properties of the fixed point solutions and deduce, as one outcome, that synchronization can
only occur for values of κ larger then a critical value κc. The synchronized frequency is
determined by minimizing a quadratic form in the fixed points with respect to the frequency
matrix.

2. Non-Abelian generalization

Recalling the identification Ui = e−iθi for the Abelian Kuramoto model, we generalize the N
equations (1) to

i U̇iU
†
i = Hi − i κ

2N

N∑
j=1

aij

(
UiU

†
j − UjU

†
i

)
, (i = 1, . . . , N), (2)

where the variable Ui is a complex n×n matrix, U †
i denotes the Hermitean conjugate of Ui and

Hi is a given n × n Hermitean matrix which therefore has real eigenvalues, which constitute
the natural frequencies of the oscillator at the node i. These natural frequencies depend
on the node and may be allocated random values according to a given probability distribution.
The matrices Hi could also have a given time dependence but we assume here that each Hi is
time independent. The connectivity matrix (aij ) and the coupling constant κ , which has the
dimension of inverse time, have the same meaning as before.

In (2) the variable Ui at each node i is an element of a linear vector space Vi, a subspace
of C

n2
. The effect of the coupling through the connectivity matrix (aij ) is that a trajectory in
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Vi is copied to a common vector space V, and so we regard each variable also as an element
of V, where we use the same notation Ui for the variable as an element in Vi and its copy in V.
Furthermore, we also regard the matrices Hi in Vi as being copied to V, and hence neither Hi

nor Ui, considered as elements of V, commute for different i, and so the order of the variables
Ui in the defining equations (2) must be as specified. For the Abelian Kuramoto model the
common vector space V is the unit circle S1 and the 1 × 1 matrices Hi,Ui commute for all i.
We may plot, as is usual [5], the trajectories of all N unit 2-vectors xi on a common unit circle.

Since Hi is Hermitean by choice and the remaining terms on the right-hand side of (2) are
also Hermitean by construction, it follows that i U̇iU

†
i = −i UiU̇

†
i and hence

d

dt

(
UiU

†
i

) = 0. (3)

Therefore UiU
†
i is a constant of the motion at each node and so is equal to its value at the initial

time t = 0. This implies that the amplitude of Ui is constant, where the amplitude A of any
complex matrix Z is defined according to the left polar decomposition Z = AU , where U is
unitary and A is a positive-semidefinite Hermitean matrix, with A2 = ZZ†. For properties of
matrix polar decompositions see for example [15], section 3.1. Although one could consider
models in which this constant matrix amplitude varies according to the node, we assume here
that the initial value of UiU

†
i is chosen for all i to be the identity matrix In, and then Ui is

unitary for each i for all subsequent times. For n = 1 we regain the Abelian Kuramoto model
upon parametrizing Ui = e−iθi and identifying Hi = νi . Our formulation differs slightly from
that of Kuramoto [12] which is also expressed in terms of a complex variable, in that here the
constancy of the amplitude is a consequence of the equations of motion.

The fact that unitarity of Ui follows from (2) is not surprising in the uncoupled case κ = 0,
for then these equations reduce at each node to the time-dependent Schrödinger equation in
the finite-dimensional form i U̇ = HU where H, the Hamiltonian, is a Hermitean matrix
and U may be regarded as the unitary time-evolution operator. More conveniently, we may
identify any column of U as a finite-dimensional wavefunction |ψ〉 and, as is well known,
conservation of probability and unitarity of U follow from the Schrödinger equation. We
discuss the application to quantum mechanics and the generalization to infinite dimensions
elsewhere, by investigating the time-dependent Schrödinger equation on a quantum network
with nonlinear network interactions leading to quantum synchronization.

In general, therefore, unitarity of all variables Ui follows from the requirement that the
right-hand side of (2) be Hermitean, together with the initial conditions UiU

†
i = In, and so the

system evolves with all trajectories restricted to the compact manifold of the unitary group. One
can add further terms to the model such as self-interactions or network interactions, provided
they are Hermitean, and the trajectories in all such cases are confined to the U(n) manifold. A
typical self-interaction is the linear term iα(Ui − U

†
i ) which for the Abelian model reduces to

α sin θi and may be added to the right-hand side of (1), where α is a coupling constant, as has
been discussed for the Kuramoto model by Sakaguchi [16] (also with a forcing term) and others
[14, 17]. Further network interactive terms could include i

∑N
j=1 aij (U

†
i Uj − U

†
j Ui) where

the order of the noncommuting variables is reversed compared to (2), and other terms could
include i

∑N
j=1 aij [(UiU

†
j )

m − (UjU
†
i )

m] for any positive integer m, or a sum of such terms
over m, which would lead to generalizations of the models discussed in [7, see section V.A].
A consideration, however, for all such interactions is whether or not phase synchronization
occurs. Numerical investigations (as in section 5) indicate that trajectories in such models are
generally spatially synchronized (as discussed also in section 7.1) but because there is relative
motion within synchronized clusters, phase locking does not necessarily occur. We discuss
this specifically for the S2 model in section 5, but for the models given by (2) we show in
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section 3 that there do exist limit cycles and that phase locking can therefore occur. This is
verified numerically for n = 2 in section 6.

Equations (2) are covariant under the simultaneous global transformations

Ui → SUiT , Hi → SHiS
†, (4)

where S, T are unitary time-independent matrices, independent of i. This constitutes a chiral
(left–right) SU(n)× SU(n) covariance together with a U(1) covariance, i.e. for any solutions
Ui the variables SUiT are also solutions provided that the matrices Hi transform as in (4).
Accordingly, we refer to (2) as an SU(n) × SU(n) model.

The model (2) is a set of equations relating elements of the Lie algebra un of U(n) and
extends to subgroups of U(n). If the matrices Hi are elements of a subalgebra of un, and if
each Ui is initially an element of the corresponding subgroup of U(n), then the system evolves
on the manifold of that subgroup. For example, if the n × n matrices Ji = −iHi are all real
and antisymmetric, and are therefore elements of the Lie algebra son, and if the initial matrices
Ui(0) are elements Oi of the rotation group SO(n), then the variables Oi(t) are restricted to
the group manifold of SO(n) for all subsequent times. We can state the equations for this
model in the form

ȮiO
t
i = Ji − κ

2N

N∑
j=1

aij (OiO
t
j − OjO

t
i ) (i = 1, . . . , N), (5)

where Ji is a given set of real, antisymmetric n × n matrices, the variables Oi are n × n real
matrices and Ot denotes the transpose of O. Since all terms on the right-hand side of (5) are
antisymmetric it follows as before that OiO

t
i is a constant of the motion at each node and so,

by initially choosing OiO
t
i to be the identity matrix In, the variables Oi evolve as elements of

SO(n). For the Abelian case n = 2 with Ji = −νi ı2 and Oi = e−ı2θi , where

ı2 =
(

0 −1
1 0

)
, Oi =

(
cos θi sin θi

− sin θi cos θi

)
, (6)

we regain the Kuramoto equations (1). Equations (5) are covariant under SO(n) × SO(n)

global transformations defined by

Oi → SOiT , Ji → SJiS
t

where S, T ∈ SO(n). We briefly discuss the SO(3) × SO(3) model in section 6. There
also exist non-Abelian Kuramoto models for the symplectic groups, with defining equations
similar to (5), and hence for all classical compact Lie groups. By choosing an indefinite metric
one may extend these models to the noncompact case, for which trajectories are unbounded,
however, we do not discuss synchronization or other properties of these particular models
here. These models differ from those proposed in [18].

If the Hermitean matrices Hi mutually commute for all i they generate a u1 ⊕ · · · u1

subalgebra of un, and we may simultaneously diagonalize all Hi using the transformation (4)
with a suitable unitary matrix S. If the initial matrices Ui(0) are also chosen to be diagonal
and are therefore elements of U(1) × · · · U(1) then, by parametrizing each Ui as a diagonal
unitary matrix, equations (2) decouple into n Abelian Kuramoto systems with a common
coupling constant and synchronization occurs in the usual way. Trajectories are confined to
the manifold S1 × · · · S1, with properties of the synchronized trajectories determined by the
u1 ⊕ · · · u1 subalgebra of un.

The question arises therefore in general as to the possible trajectories of the system if
the matrices Hi belong to a subalgebra a of un, but for which the initial matrices Ui(0) are
general unitary matrices with elements chosen at random, not necessarily elements of the

5
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subgroup corresponding to a. Numerical investigations described in later sections indicate
that in this case synchronized trajectories have properties, such as common frequencies, that
are independent of the initial conditions and are determined by the specific algebra a, i.e.
synchronized trajectories are confined to the group manifold corresponding to a for any initial
conditions. For the SU(2) × SU(2) model investigated in section 6 we find numerically
for the general synchronized solution, with sufficiently large κ and all-to-all coupling, that
trajectories are bunched together on the group manifold of SU(2), namely S3, with each
trajectory following a unit circle on S3 but with such circles slightly tilted with respect to
each other. For the Abelian case with commuting Hi, however, these synchronized unit
circles are coplanar, and so all trajectories are confined to a common unit circle as for the
Abelian Kuramoto model; the orientation of this common circle depends, however, on the
initial conditions. We find a similar property for the S2 model discussed in section 5, where
trajectories for the particular Abelian case resemble those of the Abelian Kuramoto model, in
that all synchronized particles are approximately aligned on S2 in a linear formation resembling
S1 trajectories.

Synchronization may be measured as for the Abelian Kuramoto model by means of an
order matrix R defined by

R V = 1

N

N∑
j=1

Uj , (7)

where we have expressed the sum as a left polar decomposition, where R is a positive
semidefinite Hermitean matrix and V is unitary. The eigenvalues of R, which lie between
zero and unity, may be regarded as order parameters with values close to unity signifying
synchronization for corresponding modes of oscillation. Under the global transformation (4)
we have R → SRS† and so R can be diagonalized by a suitable choice of S.

For the case of all-to-all coupling we can write the defining equations (2) in terms of the
order matrix and each Ui may be regarded, as in the Abelian case, as coupling to a mean field
quantity RV . We investigate this more fully in section 7 where we express the order parameter
in terms of the centre-of-mass coordinate xCM , defined as the average location of all particles
xi , to which each particle couples.

3. Non-Abelian limit cycles

The Abelian Kuramoto equations (1) are solved by the limit cycle θi(t) = θ0
i + λt where the

synchronized frequency λ is the mean of the frequencies νi , and where the constants θ0
i satisfy

corresponding nonlinear algebraic equations. Hence, this phase-locked solution oscillates
at each node like a free system but with the natural frequency replaced by the common
synchronized frequency λ. This limit cycle generalizes for the non-Abelian case to

Ui(t) = ui e−i�t , (8)

where ui is a constant n×n unitary matrix, and � is a constant n×n Hermitean matrix, and is
therefore an element of un. We refer to (8) as a ‘limit cycle’ because numerical investigations
indicate that synchronized trajectories are numerically indistinguishable from these solutions,
following an initial transient. Equations (2) are satisfied provided

� − H̃i = − i κ

2N

N∑
j=1

aij

(
u
†
jui − u

†
i uj

)
, (9)

where the Hermitean matrix H̃i = u
†
iHiui has the same eigenvalues (natural frequencies)

as Hi. The solution (8) compares with the free solution (for κ = 0) at each node,
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Ui(t) = e−iHitui = ui e−iH̃i t , where ui is a constant unitary matrix. In the free case each
node oscillates as a linear superposition of the natural modes of oscillation, as determined
by the eigenvalues of Hi or H̃i , whereas when synchronized each node oscillates as a linear
superposition of the synchronized modes of oscillation determined by �, independent of i.

It follows from (9), by taking the matrix 2-norm ‖.‖ of both sides, that

‖� − H̃i‖ � κ

N

N∑
j=1

|aij |, (10)

where we have used the triangle inequality and the fact that ‖u‖ = 1 for any unitary matrix u.
For properties of the matrix 2-norm see [19] (chapter 1), in particular we have ‖Z‖ =

√
ρ(Z†Z)

for any square matrix Z, where the spectral radius ρ is defined by ρ(Z) = maxs |λs(Z)|, where
λs(Z) denotes the sth eigenvalue of Z. It follows that ‖uZv‖ = ‖Z‖ for any unitary matrices
u, v. For example, we have from (7), by means of the triangle inequality, that ‖R‖ � 1 and
hence that the maximum eigenvalue of R is less than unity.

The inequality (10) is a necessary condition for the limit cycle (8) to satisfy (2) and
states that the natural frequencies at each node must be near the synchronized frequencies for
synchronization to occur, and that therefore κ or the ratio

∑N
j=1 aij /N , which is the average

number of connections to the node i, must be sufficiently large. If the inequality (10) is violated
at some nodes then partial synchronization occurs, similar to that for the Abelian model, as is
demonstrated by numerical calculations.

How is the synchronization matrix � determined? Since the inequalities (10) must be
satisfied for all i one might expect � to minimize

∑
i ‖� − H̃i‖2 which, as discussed in

section 7.2, agrees with numerical evaluations of �. Given any synchronized solution Ui(t)

we therefore determine � by minimizing the function F defined by

F(�) = 1

N

N∑
i=1

‖Ui(t)� − HiUi(t)‖2 (11)

with respect to �, at any fixed time t following synchronization, however a proof that � is
determined in this way requires a stability analysis of the fixed point solutions. For the Abelian
Kuramoto model, for which Hi = νi and � = λ, we have F(λ) = ∑

i (νi −λ)2/N at any time,
and the minimum of F occurs at λ = ∑

i νi/N . In general, � depends on κ , on the natural
frequencies of Hi, and also on the initial values Ui(0) but for the cases explicitly investigated,
the synchronized frequency of the trajectories is independent of Ui(0). There appears to be
no simple formula which in general relates the synchronized frequencies to Hi and κ .

In discussing a range of models in the following we find it necessary to distinguish between
spatial and phase synchronization. The order parameter R defined in (7) measures the spatial
synchronization of the system, but not whether trajectories are phase-locked, i.e. whether (8)
is a limit cycle. As discussed in sections 5.1, 6.1 and also in [14], phase-locked solutions can
exist independent of spatial synchronization. If the solution Ui(t) is phase-locked, � may be
determined by minimizing F defined by (11), and then one may verify numerically that (8) is
a limit cycle by evaluating, after synchronization has occurred, the time-dependent parameter

1

N

N∑
i=1

‖iU̇i(t) − Ui(t)�‖

which is zero for solutions (8). Alternatively, in order to avoid the numerical computation of
time derivatives, one can evaluate

1

N

N∑
i=1

‖i Ui(t + 1) − Ui(t) e−i�‖, (12)

which is also zero for the limit cycle (8).

7
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If the solution Ui(t) is not phase-locked then the degree of phase synchronization can
be measured by disorder parameters defined independently of �. One measure follows from
the observation that UiU

†
j is constant for any pair i, j for (8) and hence the following sum,

averaged over all pairs i, j ,

D(1)(t) = 2

N(N − 1)

∑
i<j

∥∥∥∥ d

dt

(
Ui(t)U

†
j (t)

)∥∥∥∥ , (13)

is a measure of phase disorder, and is zero within numerical error for a phase-locked system.
The time derivative in this expression may be evaluated numerically by a finite difference over
a small interval. For the Abelian case, in which Ui = e−iθi , D(1)(t) measures the average
frequency separation between all pairs of nodes.

A zero value for D(1), however, establishes only that UiU
†
j is constant for any pair i, j ,

and hence that Ui(t) = ui e−iA(t) for a constant unitary matrix ui and for some time-dependent
Hermitean matrix A(t) independent of i. A second method of measuring phase locking follows
from the observation that for (8) we have ‖U̇i(t)‖ = ‖�‖, that is, for a phase-locked solution
‖U̇i(t)‖ is independent of both i and t, with a value equal to the largest synchronized frequency.
We therefore define a second disorder measure

D(2)(t) = 2

N(N − 1)

∑
i<j

|(‖U̇i(t)‖ − ‖U̇j (t)‖)|, (14)

then a zero value for D(2) implies that ‖U̇i(t)‖ is independent of i and t and hence, assuming
Ui(t) = ui e−iA(t), that ‖U̇i(t)‖ = ‖Ȧ‖ is time independent which in turn implies that Ȧ

is constant in time. Therefore we establish the existence of phase-locked synchronization,
without explicit knowledge of �, by verifying numerically that both disorder measures D(1)(t)

and D(2)(t) are zero for all times beyond the initial transient time; if the solution Ui(t) is not
phase-locked then D(1), D(2) provide measures of the phase disorder.

4. The U (2) × U (2) model and the (m − 1)-sphere models

Consider now equations (2) for n = 2, and parametrize the unitary matrix Ui in the usual way
in terms of a real 4-vector xi = (x1

i , x
2
i , x

3
i , x

4
i ) according to

Ui = e−iθi

(
i

3∑
k=1

xk
i σk + x4

i I2

)
= e−iθi

(
x4

i + ix3
i x2

i + ix1
i

−x2
i + ix1

i x4
i − ix3

i

)
, (15)

where {σk} denotes the Pauli σ -matrices. This parametrization expresses Ui as a product of a
phase e−iθi and an SU(2) matrix provided ‖xi‖ = 1, however, we allow xi to be unconstrained
and then the equations of motion enforce ‖xi‖ = 1 as a constant of the motion for each i. We
expand Hi in terms of a basis of u2 according to

Hi =
3∑

k=1

ωk
i σk + νi I2, (16)

where ωi = (ω1
i , ω

2
i , ω

3
i ) is a real 3-vector and the frequency νi is associated with the U(1)

component of Ui. After substitution into (2) and following algebraic manipulations we obtain
5N equations for the angles θi and the 4-vectors xi :

‖xi‖2 θ̇i = νi +
κ

N

N∑
j=1

aij sin(θj − θi) xi � xj , (17)

8
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‖xi‖2 ẋi = �i xi +
κ

N

N∑
j=1

aij cos(θj − θi)
(‖xi‖2 xj − xi � xj xi

)
, (18)

where �i is the real 4 × 4 antisymmetric matrix

�i =

⎛⎜⎜⎝
0 −ω3

i ω2
i −ω1

i

ω3
i 0 −ω1

i −ω2
i

−ω2
i ω1

i 0 −ω3
i

ω1
i ω2

i ω3
i 0

⎞⎟⎟⎠ . (19)

It follows from (18) by using the antisymmetry of �i that xi � ẋi = 0 and hence that ‖xi‖
is a constant of the motion for each i. As previously discussed, we choose initial conditions
such that Ui(0) is unitary and hence ‖xi (0)‖ = 1 for each i, which implies ‖xi‖ = 1 for all
subsequent times. Henceforth we set the factors ‖xi‖2 equal to unity on the left-hand sides of
equations (17), (18), although it is useful to explicitly retain the factor ‖xi‖2 on the right-hand
side of (18), since then xi � ẋi = 0 follows immediately. The value ‖xi‖ = 1 is nevertheless
maintained as a constant of the motion by setting ‖xi‖ = 1 on the right-hand side of (18),
since then

xi � ẋi = κ

N

(
1 − ‖xi‖2

) N∑
j=1

aij cos(θj − θi)xi � xj ,

which implies that if ‖xi‖2 = 1 initially then ‖xi‖2 = 1 also for all subsequent times. This
also appears to have numerical advantages in terms of accuracy. Equations (17) and (18)
may be integrated numerically without difficulty by standard routines, with the accuracy of
integration evaluated by calculating the total error

∑
i |(‖xi‖ − 1)| at the final time.

In summary, the equations of motion (17),(18) for the unconstrained variables θi, xi

restrict all trajectories to lie on the U(2) group manifold S1 × S3. Consider now specifically
the SU(2) case by choosing νi = 0 for all i in which case Hi is an element of the Lie algebra
su2. We may then satisfy (17) by setting θi = 0 and write the remaining 4N equations of
motion in the form

ẋi = �i xi +
κ

N

N∑
j=1

aij

(‖xi‖2 xj − xi � xj xi

)
, (i = 1, . . . , N). (20)

As derived, xi is a 4-vector but we now generalize these equations by allowing xi to be
an m-vector in R

m, and �i to be a set of real, antisymmetric m × m matrices. Equations
(20) therefore consist of mN equations for the mN variables xi . As before, we deduce that
xi � ẋi = 0 and hence that ‖xi‖ is constant for each i, and so by initially choosing ‖xi‖ = 1 we
find that all trajectories lie on Sm−1. This property is maintained if we allow self-interactions
at each node by allowing �i to depend on xi , possibly also with a given time dependence,
provided only that �i be antisymmetric. By including the U(1) component as in (17) all
trajectories lie on S1 × Sm−1.

Equations (20) for general m provide another generalization of the Abelian Kuramoto
model since for m = 2 we regain equations (1), as is evident upon choosing �i = νi ı2 where
ı2 is defined in (6), and parametrizing the unit 2-vectors according to xi = (cos θi , sin θi). For
general m �= 2, 4 these models differ, however, from the SU(n)× SU(n) models (2) although
they may be related by the addition of symmetry-breaking terms in the defining equations, as
we discuss for m = 3 in the following section.

Whereas equations (2) are covariant with respect to SU(n) × SU(n), equations (20) are
covariant with respect to SO(m), since for any O ∈ SO(m) and any solution xi the vector

9
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Oxi is also a solution, provided �i is replaced by O�iO
t (hence �i transforms as a rank-2

tensor under rotations). For m = 4 this global covariance corresponds to the covariance (4),
as follows from the local isomorphism SO(4) ∼= SU(2) × SU(2). Accordingly, we refer to
(20) as the SO(m), or (m − 1)-sphere model. One can generalize this model to U(m) where
the covariance group is U(m) and the variables are complex m-vectors zi , however since this
model is relevant to quantum-mechanical applications we discuss it elsewhere.

For zero coupling κ = 0 in (20) each node oscillates at its natural frequency as determined
by ẋi = �ixi , which implies ẍi = (�i)

2xi . Since �i is antisymmetric all eigenvalues
of −(�i)

2 are nonnegative, but for odd m there exists at least one zero eigenvalue and a
corresponding zero frequency mode of oscillation. The oscillating solutions are given by
xi (t) = et �i ni where ni = xi (0) is a constant unit vector.

We discuss the case m = 3 in the following section, for which trajectories lie on S2 and is
of particular interest, however, generally we find that trajectories in these models synchronize
spatially but are not necessarily phase-locked. We define the order parameter r(t), following
Kuramoto [13] and consistent with the definition (7), by first defining the centre-of-mass vector
xCM , geometrically the centroid,

xCM = 1

N

N∑
j=1

xj , (21)

where we regard xi as the location of a particle of unit mass. Then the parameter
r(t) = ‖xCM(t)‖, which lies between zero and unity, measures the spatial coherence of
the trajectories. Whether phase locking occurs, however, depends on the choice of �i ∈ som.
A limit cycle solution takes the form

xi (t) = et �ni , (22)

where � is a constant real m × m antisymmetric matrix, i.e. an element of som, and ni is a
constant unit m-vector at the node i. Equations (20) are satisfied provided [�i,�] = 0 for all
i and

(� − �i)ni = κ

N

N∑
j=1

aij (nj − ni � njni ),

which constitutes a set of nonlinear algebraic equations for ni . Corresponding to (10) we have

‖(� − �i)ni‖ � 2κ

N

N∑
j=1

|aij |,

which shows that phase locking occurs only under certain conditions such as sufficiently large
values of κ .

For m = 2 we have �i = νi ı2 and � = λ ı2 for the synchronized frequency λ = ∑
i νi/N ,

where ı2 is defined in (6), and so [�i,�] = 0 is satisfied for all i. In general, the Lie algebra
spanned by the generators �i must commute with the Lie algebra to which � belongs, for a limit
cycle and hence phase locking to exist. For m = 4, in which case SO(4) ∼= SU(2) × SU(2),
�i and � are elements of the respective commuting su2 algebras, and so a limit cycle exists
and phase locking can occur, as we discuss in section 6.

Whereas spatial synchronization is measured by the order parameter r, partial phase
synchronization may be measured by one or more disorder parameters related to those defined
in (13) and (14). Since xi � xj is constant for all pairs of nodes i, j , as follows from (22), or

10
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equivalently the distance ‖xi − xj‖ between any two nodes is constant, the averaged disorder
measure

d(1)(t) = 2

N(N − 1)

∑
i<j

∣∣∣∣ d

dt

(
xi � xj

)∣∣∣∣ (23)

is zero for phase-locked trajectories, i.e. for the limit cycle (22). A related measure, as discussed
in section 3, follows by observing that for limit cycles (22) the quantity ‖ẋi (t)‖ = ‖� ni‖ is
constant in time.

For phase-locked trajectories xi (t) the matrix � can be determined, following the
definition (11) and as discussed also in section 7.2, by minimizing

F(�) = 1

N

N∑
i=1

‖(�i − �)xi‖2 (24)

with respect to �, at any time following synchronization. Then
∑

i ‖ẋi (t) − �xi (t)‖ should
numerically be equal to zero for all times following synchronization, since synchronized
trajectories satisfy ẋi = �xi . Another test of phase locking is to evaluate the measure
corresponding to (12),

d(t) = 1

N

N∑
i=1

‖xi (t + 1) − e�xi (t)‖, (25)

which does not involve time derivatives, and is zero at all times following synchronization.
We discuss the application of these measures to the SU(2) × SU(2) model in section 6.

5. The 2-sphere model

Consider now the S2 model consisting of equations (20) for the 3-vectors xi , possibly with
a U(1) coupling as in (17). This model differs from the tops model considered in [20], also
discussed in [7, section V.B], in that the restriction of trajectories to S2 is not imposed by
an external constraint but is a consequence of the equations of motion. This model may be
formulated, analogous to equations (2), as the n = 2 case of n × n unitary matrices Ui at each
node which satisfy

i U̇iU
†
i = νi In + Hi − UiHiU

†
i − i κ

2N

N∑
j=1

aij

(
UiU

†
j − UjU

†
i

)
, (26)

where νi denotes the frequency corresponding to the Abelian component of Ui, and {Hi} is a
given set of n×n Hermitean matrices in sun, with zero trace. Since the right-hand side of (26)
is Hermitean, Ui is unitary for each i provided that each Ui is initially chosen to be unitary.
The global covariance (4) is valid only for S = T , and so (26) is covariant under unitary
global transformations. These equations constitute another non-Abelian generalization of the
Kuramoto equations (1), to which they reduce for n = 1. Generally, however, phase-locked
synchronization occurs only under restricted conditions, in particular for the limit cycle (8) to
satisfy (26) it is necessary that [Hi,�] = 0 for all i, a condition consistent with that found for
the limit cycle (22) for the Sm−1 model.

Consider now n = 2 and set Hi to be the su2 element Hi = ωi � σ/2, where
ωi = (ω1

i , ω
2
i , ω

3
i ) and σ = (σ1, σ2, σ3). We parametrize Ui according to

Ui = e−iθi

(
i x3

i x2
i + i x1

i

−x2
i + i x1

i −i x3
i

)
, (27)

11
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which is obtained by setting x4
i = 0 in (15), then we find equations (26) are satisfied provided

(17,18) hold, where xi = (x1
i , x

2
i , x

3
i ) is now a unit 3-vector and the real antisymmetric matrix

�i is given by

�i =
⎛⎝ 0 −ω3

i ω2
i

ω3
i 0 −ω1

i

−ω2
i ω1

i 0

⎞⎠ . (28)

Evidently equations (26) preserve the zero trace property of Ui as parametrized in (27). We
also set νi = 0 for all i together with θi = 0, in which case we regain (20) for m = 3. It is
convenient to write these equations in the 3-vector form

ẋi = ωi × xi +
κ

N

N∑
j=1

aij (‖xi‖2xj − xi � xj xi ), (29)

which imply ẋi � xi = 0.
Natural oscillations at each node are determined by the eigenvalues of −(�i)

2, namely
{0, ‖ωi‖2, ‖ωi‖2}. The generic equations ẋ = ω × x for the free case have the solution

x(t) = m sin φ cos ωt + n sin φ sin ωt + ω̂ cos φ, (30)

where φ is a constant angle, ω = ‖ω‖, and ω̂ is the unit vector defined by ω̂ = ω/‖ω‖, and
where {ω̂, n,m} is a set of mutually orthogonal unit vectors satisfying

n = ω̂ × m, m = n × ω̂, ω̂ = m × n.

If the initial conditions are such that φ = 0 or φ = π then x remains stationary at the fixed
point solution ±ω̂, whereas if φ = π/2 the trajectory lies on the equator with respect to the
poles ±ω̂, with a frequency ω of oscillation. For general initial conditions the free motion at
each node is therefore a linear superposition of these two modes, and so trajectories lie on a
circle of fixed latitude with respect to the poles ±ω̂, with a frequency ω = ‖ω‖.

One expects spatially synchronized solutions of the coupled equations (29) to display
similar behaviour, in which the cluster of particles is confined to a fixed latitude with a
synchronized frequency λ. Hence the unit centre-of-mass vector x̂CM = xCM/‖xCM‖, where
xCM is defined in (21), should satisfy (30) with ω replaced by λ. Numerically we find, however,
that x̂CM is generally not restricted to a fixed latitude but drifts to one of the poles ±ω̂ in
circles of decreasing radius. However, let us consider first the possible limit cycles.

As discussed in the previous section, the limit cycle (22) requires the existence of an
antisymmetric matrix � such that [�i,�] = 0 for all i. For general �i such a matrix does not
exist, however if �i belongs to an so2 subalgebra of so3, which occurs for example if two of
the three frequencies (ω1

i , ω
2
i , ω

3
i ) are zero for all i, then �i and � are proportional to an so2

generator, and therefore commute for all i. To be specific, choose ω1
i = 0 = ω2

i for all i, then
�i = ω3

i ı3 and � = λ ı3 where

ı3 =
⎛⎝0 −1 0

1 0 0
0 0 0

⎞⎠ .

The limit cycle (22), consistent with the natural oscillations (30), is given explicitly by

xi (t) = et �ni = (
n1

i , n
2
i , 0

)
cos λt +

( − n2
i , n

1
i , 0

)
sin λt + (0, 0, n3

i ), (31)

where ni is a unit 3-vector.

12
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Figure 1. The locations on the unit sphere of the N = 100 particles for κ = 2 showing random
positions at the initial time t = 0, partial synchronization at t = 3 and full synchronization at
t = 6.7.

For the frequencies ω1
i = 0 = ω2

i the full equations (29) have the fixed point solution
xi = ±(0, 0, 1) for any κ , corresponding to φ = 0 or φ = π in the solution (30) of the free
equations, i.e. n1

i = 0 = n2
i in the limit cycle (31). We may also satisfy (29) by setting x3

i = 0
for all i, in which case the equations reduce to those of the Abelian Kuramoto model. Hence, if
the initial conditions are such that xi (0) lies on the equator for all i, then all trajectories remain
on the equator and synchronization occurs as for the Abelian Kuramoto model, in particular
phase locking occurs, corresponding to n3

i = 0 in (31). For random initial conditions the
trajectories not only spatially synchronize, as measured by the order parameter r = ‖xCM‖,
but for sufficiently large κ all particles are spatially ordered in an almost linear array as for the
Abelian Kuramoto model and are almost phase-locked.

We have solved (29) numerically for κ = 2 and N = 100 particles with a Gaussian
distribution for the frequencies ω3

i about a mean ω = 2, with a standard deviation 0.3, and
an initial uniform random distribution of particles on S2. Figure1 shows the N particles
initially distributed randomly on S2, followed by partial synchronization at t = 3 and full
synchronization at t = 6.7 (corresponding to a constant value of r near unity). Evidently the
particles when synchronized are aligned in an almost linear formation approximately along
a fixed latitude. Figure 2 shows the trajectory of the unit centre of mass x̂CM for 0 � t �
60. The cluster of particles spirals towards the fixed point (0, 0, 1) as t increases, as indicated
by the trajectory of x̂CM and the particle locations, shown at times t = 22 and t = 60, maintain
the linear alignment even though the average particle separation decreases.

In figure 3, we plot the order parameter r(t), showing that synchronization occurs at about
t = 4 units when r takes a value close to unity which is almost constant. The disorder measure
d(1)(t) of phase locking, defined in (23), is close to zero after t = 4 units, which demonstrates
that trajectories are almost phase-locked following spatial synchronization at t = 4. A slight
increase in r(t) with t is visible in figure 3, specifically there is an increase of about 0.8% from
r ≈ 0.9913 at t = 10 to r ≈ 0.9992 at t = 60, which is due to tighter bunching of particles
as the cluster nears the pole (0, 0, 1), as is evident also in figure 2. This demonstrates that
phase locking is not ‘exact’, i.e. that the pairs xi � xj for all i, j are in fact slowly varying
as the system evolves. Since ‖xi − xj‖2 = 2 − 2xi � xj , a decreasing spatial separation
‖xi − xj‖ for each pair i, j , and hence increasing r(t), is associated with increasing values
xi � xj . The failure of exact phase locking, despite the existence of a ‘limit cycle’ (31), can
be attributed therefore to the tendency of the particle cluster to drift towards a pole as time
increases. This is confirmed by numerical calculation of other disorder parameters, such as
that defined in (14) which is also small but nonzero following spatial synchronization. As
further confirmation of this effect, one may calculate the frequency λ for the function (31)
at any fixed time t by minimizing

∑
i ‖ẋi (t) − λı3xi (t)‖2 with respect to λ; we find that the

13
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Figure 2. The trajectory of the unit centre-of-mass vector x̂CM(t) for 0 � t � 60 (green) traces
out a spiral curve which is attracted to the pole (blue). The N = 100 particles are shown at time
t = 22 (red) and t = 60 (purple), and maintain an alignment approximately along a fixed latitude.
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Figure 3. The order parameter r shows that spatial coherence for the system shown in figures 1
and 2 is achieved at about t = 4 units and phase locking, attained when the disorder parameter
d(1)(t) is zero, occurs for t > 4.

minimum is small (≈0.02), but not zero, and that λ is close but not equal to
∑

i ω
3
i /N with a

more significant difference as the trajectories approach the pole.
Next we consider the general case in which the frequencies ωi = (ω1

i , ω
2
i , ω

3
i ) are all

nonzero and are distributed about mean values, choosing in our numerical examples Gaussian
distributions of standard deviation 0.3 about ω = (−2, 1, 2), again for N = 100 and κ = 2.
The matrices �i , which span the Lie algebra so3, no longer commute for different i. We
find numerically that after an initial transient time spatial synchronization occurs as before,
as indicated by a value of r(t) which is constant and close to unity. The N particles bunch
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Figure 4. The trajectory of the unit centre-of-mass vector x̂CM(t) for 0 � t � 120 (green) drifts
towards the pole (blue) located at ω̂. The particle cluster (red) is shown at t = 120.

together following synchronization, but not in a linear alignment as for the Abelian case in
the example of figure 2, but are spread over a two-dimensional region. Figure 4 shows the
trajectory of the unit centre-of-mass vector x̂CM(t) for 0 � t � 120, for a particular set of
initial conditions in which the particle cluster initially circulates the equator with respect to the
poles ±ω̂, but eventually drifts towards one of the poles. This figure also shows the locations
of the individual particles at t = 120, evidently bunched together on the surface of the sphere.
This picture is confirmed by the values of the parameters r(t) and d(1)(t) plotted in figure 5,
which shows that spatial synchronization followed by phase synchronization occurs at about
t = 3.5. However, since the value of d(1)(t) is asymptotically nonzero, phase locking does not
occur, consistent with the fact that (22) is not a limit cycle for any � for general frequencies
ωi .

This behaviour, where the particle cluster synchronizes spatially at a fixed latitude and then
over time spirals closer to one of the poles, is typical over a range of frequency distributions
and initial conditions. It should be mentioned, however, that we have encountered certain
frequency distributions for a small number of nodes (N = 10), where for all initial conditions
the trajectories remain confined to a narrow band at a fixed latitude, which depends on the
initial conditions. The width of the band depends on κ , with larger values of κ corresponding
to narrower bands.

5.1. The S1 × S2 model

We describe here briefly several properties of the 2-sphere model when the U(1) coupling is
included, i.e. we consider both sets of equations (17) and (18) in which xi is a unit 3-vector and
�i is given by (28), and where we choose a distribution of frequencies νi and ωi . Trajectories
may be analysed and plotted separately on S1 for the variables θi , and on S2 for the variables
xi . A significant difference compared with the S2 model is that trajectories, following an
initial transient, separate into two disjoint clusters for each of the S1 and S2 components, due to
negative values acquired by some of the factors xi �xj and cos(θj − θi) which in effect change
the sign of κ for couplings between the corresponding nodes i, j . This effect has already been
noted in [14] for the Abelian Kuramoto model (1) for the choice aij = (−1)i−j , which leads
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Figure 5. Spatial coherence for the system shown in figure 4 is achieved at t = 3 units and for
phase coherence at t = 3.5 but since d(1)(t) is nonzero for t > 4, where d(1) is defined in (23),
phase locking does not occur.

to a separation into even and odd nodes. Couplings in this case between either even or odd
nodes are unchanged, but even–odd couplings have an effective negative value for κ which
leads to a relative displacement of π between even and odd trajectories. Numerical solutions
of (17) and (18) for random initial conditions and frequency distributions of νi and ωi show
that neither of the order parameters r, calculated for each of the S1 and S2 components, are
close to unity, consistent with the observation that trajectories are separated into two disjoint
clusters. Phase synchronization however occurs as for the S2 model, with both S1 and S2

trajectories displaying phase coherence, but generally not phase locking, due to the fact that
the two particle clusters on S2 drift to the poles.

It is useful to consider in particular the Abelian case in which ω1
i = 0 = ω2

i for which the
matrices �i commute for all i, then (17) and (18) may be solved by choosing x3

i = 0 for all i.
If we parametrize xi = (cos φi, sin φi, 0) then (17) and (18) reduce to two sets of equations
for the variables θi and φi , which decouple into Abelian Kuramoto equations for the angles
θ±
i = θi ± φi . This is evident from the matrix Ui defined in (27), which reduces to

Ui =
(

0 i e−i(θi+φi)

i e−i(θi−φi) 0

)
.

In terms of the original variables θi and xi trajectories on S1 and S2 each separate into
two clusters, with trajectories on S2 restricted to the equator, but in terms of the variables
θ±
i , however, synchronization occurs as for the Abelian Kuramoto model with trajectories

restricted to the torus S1 × S1. This applies only if the initial positions xi (0) lie entirely on
the equator.

6. The SU(2)×SU(2) model

We now consider the SU(2) × SU(2) model consisting of equations (2) for n = 2 where
Ui is parametrized according to (15) with θi = 0 for all i, and the 4-vectors xi satisfy (20)
with m = 4; trajectories are now confined to S3. The 4 × 4 matrices �i are given in terms
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of the 3-vector frequencies ωi = (ω1
i , ω

2
i , ω

3
i ) by (19), but are not the most general 4 × 4

antisymmetric matrices in so4. Rather, these matrices span an su2 subalgebra corresponding
to an SU(2) subgroup of the global covariance group SO(4) ∼= SU(2) × SU(2), and the
frequency matrix � which appears in the limit cycle (22) is an element of the commuting su2

subalgebra.
We find that properties of the SU(2) × SU(2) model resemble those of the Abelian

Kuramoto model, in that trajectories are both spatially synchronized and phase-locked with
each trajectory tracing out a great circle on S3, but with the planes of these circles slightly
tilted with respect to each other. An exception is the Abelian case, for which all matrices
�i commute, when the synchronized trajectories lie in a common two-dimensional plane
on S3, for any initial conditions. The synchronized frequency matrix �, as appears in
(22), is determined numerically and generally depends on the initial conditions although
the synchronized frequency λ = ‖�‖ depends only on ωi and κ .

Natural oscillations at each node are determined by the equations ẋi = �ixi , which imply
ẍi = �2

i xi where �i is given in (19). Since �2
i = −‖ωi‖2I4 all solutions of ẋi = �ixi are

given by

xi (t) = et�i ni = ni cos(‖ωi‖t) + mi sin(‖ωi‖t), (32)

where ni ,mi are constant orthogonal unit 4-vectors, which are related according to
mi = �ini/‖ωi‖ and ni = −�imi/‖ωi‖. Natural oscillations at the node i are therefore all
of the same frequency ‖ωi‖, with trajectories restricted to the two-dimensional plane in R

4

spanned by the vectors mi , ni . Hence, every such trajectory follows a great circle on S3.
Limit cycles take the general form (22), that is xi (t) = et �ni where �, an element of

so4, commutes with �i for every i. The most general form of � can be deduced from the
non-Abelian limit cycles (8) (where � refers to a Hermitean 2 × 2 matrix), from which we
find

� =

⎛⎜⎜⎝
0 λ3 −λ2 −λ1

−λ3 0 λ1 −λ2

λ2 −λ1 0 −λ3

λ1 λ2 λ3 0

⎞⎟⎟⎠ , (33)

where λ = (λ1, λ2, λ3) is a frequency 3-vector. This matrix is evidently antisymmetric and,
as may be verified directly, also satisfies [�,�i] = 0 for all i where �i is given in (19), and
is therefore an element of the su2 algebra which commutes with �i . We have �2 = −λ2I4

where λ = ‖λ‖ = ‖�‖, hence the limit cycle has the form

xi (t) = et �ni = ni cos λt + mi sin λt, (34)

where ni ,mi are constant orthogonal unit 4-vectors with mi = �ni/λ. Evidently these
limit cycles correspond to the natural oscillations (32) but with each natural frequency ‖ωi‖
replaced by the synchronized frequency λ.

We find numerically, for sufficiently large κ with random initial conditions, for natural
frequencies ωi = (ω1

i , ω
2
i , ω

3
i ) with given random distributions, and with all-to-all coupling,

that trajectories are spatially synchronized as measured by the order parameter r(t), which
takes a constant value near unity following an initial transient time t = ts. Trajectories are also
phase synchronized at time t = tp > ts as measured by a zero value for the disorder parameter
d(1)(t) defined in (23), for all t > tp. We find that the value of xi � xj , which is therefore
constant in time, is close to unity for each i, j reflecting the fact that the constant distance
‖xi − xj‖ between each pair of particles is small. Since N2r2 = ∑

i,j xi � xj the constant
value of each pair xi � xj is approximately r2. For the limit cycle (34) we have ‖ẋi (t)‖ = λ,
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Figure 6. The locations in R
3 of the N = 100 particles for κ = 2, projected stereographically from

S3, showing uncorrelated positions at time t = 2 and full synchronization at t = 6. The projected
unit centre-of-mass trajectory (green), shown for 0 < t < 20, is a circle following synchronization
which lies in a plane through the origin (blue).

independent of i and t, and so we also evaluate the disorder parameter d(2)(t) (following the
definition (14)) defined by

d(2)(t) = 2

N(N − 1)

∑
i<j

∣∣(‖ẋi (t)‖ − ‖ẋj (t)‖
)∣∣ (35)

which is also numerically zero for t > tp.
Evaluation of the disorder parameters d(1), d(2) does not require knowledge of the

synchronized frequency matrix � which may be found by minimizing F(�) as defined
in (24), with respect to �, at any time t > tp. Then we determine that

∑
i ‖ẋi (t) − �xi (t)‖ is

numerically zero for all t > tp. As further confirmation that the numerical solution corresponds
to the limit cycle (34), we evaluate d(t) as defined in (25) and find that this parameter is also
zero for all t > tp. Hence we establish numerically that synchronized trajectories follow great
circles on S3 which lie in planes that are slightly tilted with respect to each other. An average
plane can be defined as that followed by the unit centre of mass x̂CM, which synchronizes to the
limit cycle x̂CM(t) = et �n where n is a unit 4-vector. The orientation of this plane depends
on the initial values xi (0), as does �, however, we find that the synchronized frequency
λ = ‖�‖ depends only on the natural frequencies ωi and on κ . In general, for a range of
natural frequencies, λ takes a value close but not equal to

∑
i ‖ωi‖/N .

In our numerical calculations we chose Gaussian distributions of standard deviation 0.3
about ω = (−2, 1, 2) for the frequencies ωi , with N = 100 and κ = 2, and random initial
conditions. Solutions are displayed in figure 6 by means of a stereographic projection, in
which 4-vectors xi on S3 are mapped to 3-vectors ui in R

3 according to

ui = (x1
i , x

2
i , x

3
i )

1 − x4
i

.

The particle locations are shown at time t = 2 units, spatially uncorrelated, and also at t = 6
fully synchronized, together with the projected unit centre-of-mass x̂CM(t) trajectory, which
is a circle lying in a plane through the origin. Figure 7 shows firstly the order parameter r(t) as
a function of time, revealing that spatial synchronization occurs at t = 4 units, and secondly
the disorder parameter d(t) defined in (25), which is apparently zero for t � 5 but in fact
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Figure 7. Spatial coherence for the system shown in figure 6 is achieved at t = 4 and phase
locking occurs at t = 5 when d(t) is zero, where d is defined in (25).

decreases monotonically from t = 2 until such time t > 8 when numerical error becomes
significant. Disorder parameters such as d(2)(t) defined in (35) and others discussed above
are also numerically zero following phase synchronization. Hence all trajectories become
phase-locked and are numerically indistinguishable from the limit cycles (34).

For the Abelian case, for which the matrices �i in (19) commute for all i, synchronization
occurs with properties similar to those for the general case. In particular if we choose
ω1

i = 0 = ω2
i for all i and set either x3

i = 0 = x4
i or x1

i = 0 = x2
i then (20) reduces to

the Abelian Kuramoto model. Hence, if the particles initially lie in the X3–X4 plane, or the
X1–X2 plane, then subsequent trajectories also lie in the same plane and synchronization takes
place as for the Abelian Kuramoto model. If we choose random initial positions on S3 with
ω1

i = 0 = ω2
i for all i, then we find that synchronization with phase locking occurs in which

all synchronized trajectories lie on a common great circle on S3, which therefore coincides
with the trajectory of the unit centre of mass. This means that all particles are aligned linearly
on a common circle, as for the Abelian Kuramoto model, however the plane in which this
circle lies depends on the initial conditions since, as already discussed, trajectories initially
in either the X1–X2 plane or X3–X4 plane remain within that plane. This is consistent with
the previous observation that the synchronization matrix � depends on the initial conditions,
however we do find in this case that the synchronized frequency ‖�‖ is equal to the average
natural frequency

∑
i ‖ωi‖/N , and so is also independent of κ . In general, therefore, we find

for the case of Abelian matrices �i that synchronized trajectories behave like those of the
Abelian Kuramoto model and are restricted to a common unit circle on S3, the orientation of
which depends on the frequencies ωi , the initial values xi (0), and on κ .

6.1. The SO(3)×SO(3) model

We discuss here briefly the model consisting of equations (5) for n = 3 where the 3 × 3
matrices Ji = 2�i are elements of so3 with �i given in (28). As one would expect, this
model is related to the SU(2) × SU(2) model discussed in the previous section, as follows by
parametrizing an SO(3) matrix O in terms of a corresponding SU(2) matrix U according to
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(O)rs = 1
2 Tr(σrUσsU

†), which defines a homomorphism that maps elements ±U of SU(2)

to O ∈ SO(3). We may parametrize each Ui by means of a unit 4-vector xi according to
(15), setting θi = 0, and hence parametrize elements of SO(3) in terms of unit 4-vectors xi .
Specifically, if we write x = (x, y, z,w) with x2 + y2 + z2 + w2 = 1 then

O =
⎛⎝x2 − y2 − z2 + w2 2(xy + zw) 2(xz − yw)

2(xy − zw) −x2 + y2 − z2 + w2 2(xw + yz)

2(xz + yw) 2(yz − xw) −x2 − y2 + z2 + w2

⎞⎠
is an element of SO(3). With this parametrization equations (5) reduce to

‖xi‖4 ẋi = �i xi +
κ

N

N∑
j=1

aij xi � xj

(‖xi‖2xj − xi � xj xi

)
, (36)

for i = 1, . . . , N where xi is a 4-vector and �i is the 4 × 4 matrix given by (19). As before,
these equations imply xi � ẋi = 0 and hence we may set ‖xi‖ = 1 in (36), however these
equations differ from (20) in that aij is replaced by aij xi � xj . Unlike (20), the 4N equations
(36) are invariant under the replacement xi → −xi for any fixed i, with xj unchanged for all
other values j �= i. This is a consequence of the two-to-one mapping from SU(2) to SO(3).

Phase-locked synchronization occurs as for the SU(2) × SU(2) model for sufficiently
large κ , in particular, when synchronized, all pairs |xi � xj | are constant in time with a value
close to unity, which means that synchronization occurs with a slightly reduced effective value
for κ . However because xi � xj can also take constant negative values for some pairs i, j ,
the coupling κ between such pairs is effectively negative, which separates the cluster of N
particles into two disjoint groups in a way similar to that described in section 5.1. Consistent
with this, we find numerically that even when phase locking has occurred the order parameter r
takes a constant value which is significantly less than unity, following the initial transient. The
existence of phase locking can be verified by calculating the various phase disorder measures
previously discussed, for example one may calculate � by minimizing F(�) as in (24), and
then evaluate d(t) in (25), which we find approaches zero following the initial transient.

7. Spatial synchronization and fixed points

We discuss here firstly spatial synchronization in the Sm−1 models, restricted to all-to-all
coupling, and provide at least a partial explanation as to why particles tend to bunch together
for sufficiently large κ , independent of whether the motion is phase synchronized, assuming
that some clustering has already occurred. We then investigate fixed point solutions, a topic
which together with a stability analysis has been extensively studied for the Abelian Kuramoto
model, see for example [21–23], where our aim is to identify general properties of the fixed
points without proving stability. We write equations (20) of the Sm−1 model in the form

ẋi = �i xi + κ xCM − κ xi (xi � xCM) (i = 1, . . . , N), (37)

where xi is a unit m-vector at the node i, xCM is defined by (21) and κ > 0. Each node couples
to other nodes through xCM , as for the Abelian case.

7.1. Qualitative properties of spatial synchronization

Spatial synchronization, in which r takes a constant value near unity, occurs for the Sm−1

models (although not for the models discussed in sections 5.1 and 6.1) even though phase
locking does not necessarily occur, as in the S2 model. In order for spatial synchronization to
occur for random initial conditions the distance ‖xi −xj‖ between any two particles i, j must
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decrease with time, although not necessarily monotonically. We evaluate this rate of change
by calculating ẋi � xj + xi � ẋj from (37) and hence determine that

d

dt
‖xi − xj‖ = x̂i−j � (�ixi − �jxj ) − κ‖xi − xj‖(xi+j � xCM), (38)

where x̂i−j = (xi − xj )/‖xi − xj‖ and xi+j = (xi + xj )/2. The magnitude of the first term
on the right-hand side is bounded above by ‖�i‖ + ‖�j‖, whereas the last term is bounded
by κ r ‖xi − xj‖ � 2κ where r = ‖xCM‖. For sufficiently large κ the last term is dominant
and provided the inner product (xi+j � xCM) is bounded below by a positive number for all i, j ,
as occurs for example if all particles are located in a common hemisphere of Sm−1, then the
right-hand side of (38) is negative. Then ‖xi − xj‖ decreases monotonically with time while
(xi+j �xCM) remains positive, i.e. particles bunch further together and so synchronize spatially.
This is indicated by a value of r near unity, as follows from 2N2(1 − r2) = ∑

i,j ‖xi − xj‖2,
which demonstrates that r ≈ 1 corresponds to a small value for each distance ‖xi − xj‖.

As xi approaches xj the effective coupling κ r ‖xi − xj‖ in (38) eventually reduces
for any fixed κ to a value comparable to ‖�i‖ + ‖�j‖, and the right-hand side of (38) then
becomes indefinite in sign. The particle cluster becomes more tightly bunched therefore only
if κ is increased. Similarly, if two nodes i, j are co-located, i.e. xi = xj initially, then the
time derivative of ‖xi − xj‖ is nonzero and so the particles i, j separate. If there exist one
or more nodes i for which ‖�i‖ is larger than fixed 2κ , the right-hand side of (38) is of
indefinite sign, and such nodes i therefore do not spatially synchronize with other nodes j .
These considerations are independent of whether phase locking occurs.

7.2. Fixed points

Consider now fixed point solutions to equations (37), but omitting the question of stability
of such solutions. Keeping in mind the limit cycle (22) we define the unit vectors
ni (t) = e−t �xi (t), where we assume that there exists a real m × m matrix � which is
antisymmetric and commutes with �i for all i, but is for now otherwise unspecified. We
denote by nCM = e−t �x̂CM the rotated unit centre-of-mass vector which is also defined by
nCM = ∑

i ni/(Nr) where r = ‖xCM‖. Then (37) is equivalent to

ṅi = (�i − �)ni + κrnCM − κrni (ni � nCM).

We look for fixed point solutions of these equations and hence, setting ṅi = 0, we have

(�i − �)ni = κ r ni (ni � nCM) − κ r nCM . (39)

Squaring both sides gives

‖(�i − �)ni‖2 = κ2r2 [
1 − (ni � nCM)2] . (40)

It follows that ‖(�i − �)ni‖ � κ r and hence ‖(�i − �)ni‖ � κ at each node i, in order
that a fixed point solution should exist. Since |(‖�ini‖ − ‖�ni‖)| � ‖(�i − �)ni‖ we
see, consistent with (10), that the natural frequencies should be close to the synchronized
frequencies for fixed point solutions ni to exist.

The fact that the inequalities ‖(�i − �)ni‖ � κ must be satisfied for all i suggests, as
discussed in section 3, that we define � as the matrix that minimizes the function

F(�) = 1

N

N∑
i=1

‖(�i − �)ni‖2 . (41)

Although we do not prove that fixed points with this property are stable, we may verify that
� minimizes F for known cases. For m = 2 we have �i = νi ı2,� = λ ı2 where ı2 is
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given in (6), hence ‖(�i − �)ni‖2 = (νi − λ)2 and therefore F(λ) is minimized correctly by
λ = ∑

i νi/N .
For m = 4 the matrices �i,�, which commute for all i, are given by (19), (33)

respectively and satisfy �2
i = −‖ωi‖2I4 where ωi = (ω1

i , ω
2
i , ω

3
i ), and �2 = −λ2I4

where λ = ‖�‖ = ‖λ‖, with λ = (λ1, λ2, λ3). As shown in the limit cycle (34), λ is
the synchronization frequency. We may write � = ∑3

α=1 λαKα where the so3 generators
(K1,K2,K3) can be identified from (33), and satisfy the Pauli algebra {Kα,Kβ} = −2δαβI4.
The function F defined by (41) is given by

F(λ1, λ2, λ3) = λ2 +
1

N

N∑
i=1

‖ωi‖2 +
2

N

3∑
α=1

N∑
i=1

λα(ni � Kα�ini ),

and the minimum occurs at

λα = − 1

N

N∑
i=1

(ni � Kα�i ni ), α = 1, 2, 3. (42)

The frequency λ is determined from this formula and also satisfies as a consequence

λ2 = − 1

N

N∑
i=1

(ni � ��i ni ). (43)

This particular equation can also be derived from (39) by premultiplying by �, taking the inner
product with ni , and summing over i. Since ‖�i‖ = ‖ωi‖, it follows that λ �

∑
i ‖ωi‖/N ,

independent of the initial conditions and also κ .
Numerical computations, as discussed in section 6, agree with these formulas. For any

given numerical solution xi (t) it is convenient to determine � by minimizing F(�) as given
in (24) with respect to �, at any fixed time following synchronization. We find that the fixed
points ni , the vector nCM , and the matrix � all depend on the initial values xi (0) as well
as on the natural frequencies ωi and on κ . As found in section 6, the orientation of each
two-dimensional plane of a synchronized trajectory on S3 depends on the initial conditions.
We find numerically, however, that the frequencies ρi defined by

ρi = ‖(�i − �)ni‖ = ‖(�i − �)xi‖ (44)

are independent of xi (0), i.e. each ρi depends only on the natural frequencies ω1, . . . , ωN and
on κ . Hence from (40), and confirmed also numerically, ni �nCM is independent of xi (0), as is
the synchronized frequency λ, the scalars 2ni � ��ini = ρ2

i − ‖ωi‖2 − λ2, and the minimum
of F, which takes the value

Fmin = 1

N

N∑
i=1

ρ2
i = −λ2 +

1

N

N∑
i=1

‖ωi‖2,

even though the location of the minimum depends on xi (0).
The inequality λ �

∑
i ‖ωi‖/N is also satisfied numerically, with equality for the Abelian

case in which the matrices �i mutually commute for all i. Evidently in this case the unit
3-vectors vi = (v1

i , v
2
i , v

3
i ), where

vα
i = 1

‖ωi‖ni � Kα�ini ,
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are parallel and therefore independent of i. We may set vi = v for each i, and so for the
Abelian case we have

λ = − v

N

N∑
i=1

‖ωi‖.

We also find, as for m = 2, that λ is independent of κ . For general �i , however, the unit
vectors vi are not quite parallel and we have the formula, from (42), λ = −∑

i (‖ωi‖vi )/N .
The synchronized frequency λ now depends on κ as well as the natural frequencies ωi .

Returning now to (40) for general m, with the definition (44) we have

ni � nCM =
√

1 − ρ2
i

κ2 r2
, (45)

where we assume that only positive signs are permitted in taking the square root. This is proved
for the Abelian case m = 2 in [21], also [23], and numerically we find ni �nCM > 0 to be valid
also for m = 4 in section 6. Generally, from the equation 2N(1 − r) = ∑

i ‖ni − nCM‖2 we
have the inequality ‖ni −nCM‖2 � 2N(1−r) for each i, which implies ni �nCM � 1−N(1−r)

and so provided 1 − r � 1/N , which holds for sufficiently large κ , we have ni � nCM � 0 for
all i. The SO(3)×SO(3) model described in section 6.1 violates these inequalities, however,
since phase locking occurs without spatial synchronization.

The sum
∑

i ni � nCM = N r implies

1

N

N∑
i=1

√
1 − ρ2

i

κ2 r2
= r (46)

which, for fixed frequencies ρi , determines r as a function of κ . Solutions exist only for
κ � maxi ρi . We follow the analysis of Mirollo and Strogatz [21] (section 3 on locked states)
by defining

f (x) = 1

N

N∑
i=1

√
x − ρ2

i ,

where x = κ2 r2, and look for solutions of κf (x) = x. The domain of f is [ρ2,∞) where
ρ = maxi ρi and f satisfies various properties as described in [21]. There exist two critical
values of κ , κc < κ ′

c such that

(a) for 0 < κ < κc there are no solutions to κf (x) = x;
(b) for κ = κc there is one solution to κf (x) = x;
(c) for κc < κ � κ ′

c there are two solutions to κf (x) = x;
(d) for κ ′

c < κ there is one solution to κf (x) = x.

Any x ∈ [ρ2,∞) determines a solution (r, κ) to (46) with r = f (x)/
√

x and κ = x/f (x).
There is a unique critical value xc such that f ′(xc) = f (xc)/xc, and so any x ∈ (xc,∞)

parametrizes a solution (r, κ) to (46) with

r > rc = f (xc)√
xc

, κ > κc = xc

f (xc
.

It is shown in [21] that for m = 2 all such solutions lead to stable fixed points.
In summary, given the matrices �i of natural frequencies and a coupling constant κ , we

find the fixed points ni in principle by firstly evaluating the frequencies ρ1, . . . , ρN which are
functions only of �i and κ (although we have no closed formula for these functions), and then
determining a solution r = r(κ) to (46). Then from (45) we find the scalars ni � nCM . We now
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solve equations (39), which we regard as a set of linear equations for the N unit m-vectors
n1, . . . , nN (recalling that r nCM = ∑

i ni/N), while simultaneously minimizing F in (41)
in order to find �. The solution is not unique, since for any fixed point ni another solution
is et0 �ni (t), where t0 is any parameter. The Abelian case m = 2 is of course much simpler
because � = λ ı2 is known explicitly, as is ρ2

i = (νi −λ)2, and so (39) may be solved directly.
As a final remark, for m = 2 it is known [24] that the defining equations can be expressed

in the gradient form θ̇ = −∇θ�, where θ = (θi) denotes the N-vector of all components,
for a scalar function �. This property is useful for a stability analysis [24, 21] but can be
only partially generalized to equations (17), (18), where xi denotes m-vectors. Taking now a
general connectivity matrix (aij ), we define the scalar functions

�i(θ1, . . . , θN , x1, . . . , xN) = −
N∑

j=1

νj θj − κ

N

N∑
j=1

aij cos(θj − θi)
xi

‖xi‖ � xj

‖xj‖ ,

for i = 1, . . . , N . Each �i is defined on the N-torus TN with respect to the variables θi , and
on R

mN\{0} with respect to the N unconstrained m-vectors xi . Equations (17) and (18) may
be written in the equivalent form

θ̇i = −∂�i

∂θi

, ẋi = �ixi − ∇i�i,

where ∇i refers to the gradient with respect to xi ; however, for m > 2 the term �ixi cannot
conveniently be expressed as the gradient of a scalar function.

8. Conclusion

We have defined essentially two generalizations of the Kuramoto model and identified the
main features of each. The first generalization consists of the chirally covariant models (2)
which can be formulated for any classical compact Lie group and have properties similar to
the Abelian Kuramoto model, such as synchronization of trajectories with phase locking for
coupling strengths greater than some critical value. Limit cycles exist for all such models
and we have investigated numerical solutions for the SU(2) × SU(2) case. Synchronization
frequencies are determined by minimizing a quadratic function of the trajectories, but do not
generally have a simple expression in terms of the natural frequencies.

The second generalization consists of models such as (26) with a broken chiral symmetry,
which we have formulated as Sm−1 models and for which phase synchronization and limit
cycles exist only under special conditions. Numerical results for m = 3 indicate that although
spatial synchronization generally occurs, phase coherence is not exact and that trajectories are
attracted towards a fixed point.

These non-Abelian models provide a means of synchronizing processes with many degrees
of freedom at each node. There remain, of course, many aspects of synchronization still to
be investigated, such as partial synchronization for weak couplings, the effect of nontrivial
network connections with a large number of nodes, specific properties of the models for higher
rank symmetry groups, as well as a classification and proof of stability of all fixed points,
special properties as N → ∞, and topological properties.
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